w_i=\max\left\{\left\|\ell_j-I\right\|^{-p}\cos\left(s_i,\ell_j-I\right):j\in\left\{1,2,3,\dots,N\right\}\right\}
\\
\\
m_i=\mbox{any }v_j:\left[\left(\left\|\ell_j-I\right\|^{-p}\cos\left(s_i,\ell_j-I\right)=w_i\right)\land
j\in\left\{1,2,3,\dots,N\right\}\right]
\\
\\
f(I)=\begin{cases}
v_i\mbox{ if }\exists{i}\in\left\{1,2,3,\dots,N\right\}\left(I=\ell_i\right)\\
\displaystyle\frac{\displaystyle\sum_{i=1}^{P}m_iw_i} {\displaystyle\sum_{i=1}^{P}w_i}\mbox{
otherwise }
\end{cases}
\\
\\
\\
I = \mbox{Location of interpolation} \\
p = \mbox{Propagation of influence power, } p>0 \\
v_i = \mbox{Value of sample }i,~i\in\left\{1,2,3,\dots,N\right\} \\
\ell_i = \mbox{Location of sample }i,~i\in\left\{1,2,3,\dots,N\right\} \\
N = \mbox{Number of samples} \\
s_i = \mbox{Evenly spaced unit vector on surface of sphere,}~i\in\left\{1,2,3,\dots,P\right\}
\\
P = \mbox{Precision (number of unit vectors on sphere),}~P\gg2d \\
d = \mbox{Dimensionality of data (}d=2\mbox{ is planar)}
|